

0040-4020(94)00555-9

Regioselective Synthesis of 20-Hydroxyecdysone Glycosides

Jaroslav Píš*, Jiří Hykl, Miloš Buděšínský and Juraj Harmatha*

Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, 16610 Prague, Czech Republic

Abstract: Four β -D-glucopyranosides of 20-hydroxyecdysone (1) were prepared. The regioselective course of glycosylation was achieved by the combination of hydroxyl and 1,2-diol protective groups, *i.e.* acetates and phenyl boronates, in the aglycone moiety.

INTRODUCTION

The growing number of ecdysteroid conjugates isolated from both animals¹ and plants² suggests an active role in the ecdysteroid metabolism, transport or deactivation. The nonpolar esters and more polar ecdysteroid glycosides are the most common conjugates of natural origin. Their possible ecological significance in plant-insect chemical interaction is considered³. Since these compounds are mostly inactive in the common ecdysone assays⁴, new biological tests must be developed. Some 20-hydroxyecdysone glycosides have been isolated from animal⁵ and plant⁶ sources, 20-hydroxyecdysone 25- β -D-glucopyranoside (5) has been isolated⁷ from the roots of *Pfaffia iresinoides*, however the structural variations and the amount available are rather limited. For new bioassays, as well as for analytical correlation, a suitable variety of conjugates must be prepared by chemical synthesis. This paper deals with the preparation of a series of bioanalogical glycosides 2-5.

Fig.1. Structures of 20-hydroxyecdysone and its glucosides

Regioselective manipulation of hydroxyl groups of polyols is frequently required particularly in the chemistry of natural products. However, only a few examples of protection and deprotection sequences for 20-hydroxyecdysone (1) have been reported. They include acetonide¹⁹, acetate⁹ and boronate^{10,11} formation.

Other reagents, e.g. N-trimethylsilylimidazole¹² and 1-anthroyl nitrile¹³, have been employed for analytical purposes. None of the reported protection procedures allows the whole set of regioisomers to be prepared.

RESULTS AND DISCUSSION

The structure of 20-hydroxyecdysone (1) suggests that the problem of regioselective manipulation of hydroxyl groups may be solved in this case by methods which distinguish between isolated hydroxyls and 1,2-diols. We therefore searched for a suitable diol-protective group. The phenylboronate group appeared most suitable, because it can be introduced regioselectively in high yield. The acetate group was chosen for protection of isolated hydroxyls in the aglycone because it corresponded with our intention to control stereochemistry on the anomeric carbon of glucose by acetyl group participation¹⁴. Suitable protected aglycones 6, 8, 12 and 17 were prepared as follows, 20-Hydroxyecdysone (1) was acetylated to give known⁹ triacetate 6 as the major product along with small amount of 20-hydroxyecdysone 2,3,22,25-tetraacetate. The side chain diol of 20-hydroxyecdysone (1) was protected by reaction with phenylboronic acid in methanol to give the phenylboronate 8. It is worthwhile to note that phenylboronate is formed exclusively on the side-chain diol¹¹. The most reactive hydroxyl group (i.e. at C-2) of boronate 8 can easily be protected as an acetate under mild acetylation conditions, yielding compound 12 (77 %). Diacetate 13 (16 %) was formed as a by-product. In order to prepare protected compound 13 as the major product, acetylation using DMAP was used giving diacetate 13 in 78 % yield and triacetate 14 as a by-product. Prolonged reaction times furnished triacetate 14 in excellent yield (85 %). Deprotection of the phenylboronate group in compound 13 was accomplished by a methanolic solution of hydrogen peroxide giving aglycone 17. Having suitably protected aglycones in hand, we turned our attention to glycosylation. Tetra-O-acetylglucopyranosyl bromide and Ag-silicate catalyst were used for the introduction of the glucose unit. All glycosylation reactions were performed in dry dichloromethane under an inert atmosphere. Glycosides were isolated from the reaction mixtures by normal-phase HPLC. Yields of the glycosylation reaction varied from 40 % to 70 %, and the stereochemistry of the resulting glycosides was β (determined by ¹H-NMR). Triacetate 6 thus furnished protected glycoside 7 in 69 % yield. Diacetate 17 afforded acetylated glycosides 18 (9 %) and 19 (32 %). A mixture of glycosides 9 (42 %), 10 (21 %) and 11 (7%) resulted from the reaction of boronate 8, yielding after separation of individual compounds and removing of the boronate protection group glycosides 20, 21 and 22. In order to increase the yield of 3-glycoside we also utilized 2-acetate 12. However, the glycosylation reaction gave the mixture of 3- and 25-glycosides 15 and 16 in a 1 : 1 ratio. Finally, the protective acetate groups were removed from compounds 7, 18, 19, 20 and 21 by potassium cvanide catalysed transesterification¹⁵. This method is mild enough to avoid epimerization of the steroid skeleton. Generally an equilibrium of A/B cis and trans fused steroid rings is reached when ecdysteroids are subjected to basic conditions^{16,17}.

All compounds 1 - 22 were fully characterised by ¹H-NMR (see Table 2) and compounds 1 - 5, 17- 22 also by ¹³C-NMR spectra (see Table 1). The data for glucoside 5 are in a good accordance with data previously reported⁷. The position of free and/or acetylated glucose was determined from observed glucosylation shifts in ¹H and ¹³C-NMR spectra of corresponding compounds (see Table 3). β -Configuration of glucose followed from J(H-1',H-2') ca 8 Hz observed in all glycosides studied (Table 2). The characteristic downfield proton shifts indicating the location of phenylboronate grouping are discussed in our previous paper¹¹.

Fig. 2. Synthesis of 20-hydroxyecdysone glucosides

EXPERIMENTAL

General

Starting 20-hydroxyecdysone (1) was isolated from the roots of Leuzea carthamoides (Willd.) DC.¹⁸ and was fully characterised by ¹H-NMR, MS and IR. Tetra-O-acetylglucopyranosyl bromide was prepared from

D-glucose according to known procedures¹⁹, and was characterised by ¹H-NMR. Ag-silicate was prepared from silver nitrate and sodium metasilicate²⁰; Ag content was approx. 3.4 mmol/g of support. Hydrogen peroxide (30 % aqueous solution) was from Lachema. Other reagents were from either Lachema or Aldrich and were used without any further purification. Solvents were from Lachema and were purified and dried according to standard procedures. Dichloromethane was freshly distilled from phosphorus pentoxide and glycosylation reactions were performed under an inert atmosphere of dry nitrogen in oven dried glassware. Normal-phase HPLC using a column (8 mm I.D., 250 mm length) packed with Separon SGX 7um was employed for the isolation of reaction products. Ternary mixtures of dichloromethane-methanol-water (DMW) of various elutropic strengths were used as the mobile phase (concentrations are given as volume/volume). Glucosides 2-5 were purified by a reversed phase HPLC using a column (8 mm I.D., 250 mm length) packed with 7µm Separon SGX C-18 and methanol-water mixtures (for concentrations and retention times see below) as the mobile phase. The flow rate was 4 ml/min in all cases. The compounds were detected by a UV detector at 254 nm. Infrared spectra were recorded on a Bruker IPS-88 in CHCl, unless stated otherwise. NMR spectra were recorded either on a Varian UNITY-200 (at 200 MHz for 'H and 50.3 MHz for ¹³C) or Varian UNITY-500 (at 500 MHz for ¹H and 125.7 MHz for ¹³C) in acetone-d₆ (¹H) and methanol-d₄ (¹³C). Chemical shifts were referenced to the residual solvent signal at 2.05 ppm (¹H) and 49.00 ppm (¹³C). NMR spectra of very poor-soluble compound 3 were run in pyridine-d. Mass spectra were recorded on a ZAB-EQ spectrometer with fast atom bombardment (FAB) ionisation using a glycerol - thioglycerol mixture as a matrix. The melting points were determined on a Boëtius apparatus and are uncorrected.

20-Hydroxyecdysone 2-β-D-glucopyranoside (2).

(20R,22R)-2β-(β-D-Glucopyranosyloxy)-3β,14α,20,22,25-pentahydroxy-5β-cholest-7-en-6-one

Acetylated glycoside 20 (5.3 mg; 6.5 µmol) was dissolved in methanol (150 µl) and solid potassium cyanide (0.7 mg) was added. The reaction mixture was stirred overnight at room temperature. The resulting solution was concentrated to 30 µl and purified by RP-HPLC (40% MeOH in water, R.T.=13.5 min). Glycoside 2 (3.0 mg, 72 %) was obtained as an amorphous solid (m.p. 180-183°C) after evaporation of solvents. IR spectrum (KBr pellet): 3420 ($v_{O,H}$); 1652 ($v_{C=0}$); 1050, 1031 ($v_{C=0}$) cm⁻¹. Mass spectrum: 665 [M+Na], 647 [M+Na-H₂O], 643 [M+H], 625 [M+H-H₂O], C₃₃H₅₄O₁₂ (M+H) requires 643.3694, found 643.3656. For ¹³C and ¹H-NMR spectrum see Table 1 and 2.

20-Hydroxyecdysone 3-β-D-glucopyranoside (3).

(20R,22R)-3β-(β-D-Glucopyranosyloxy)-2β,14α,20,22,25-pentahydroxy-5β-cholest-7-en-6-one

Acetylated glycoside 21 (4.0 mg, 4.9 μ mol) was treated with potassium cyanide (0.6 mg) in methanol (150 μ l) in the same manner as in the synthesis of glycoside 2, yielding after RP-HPLC separation (40% MeOH in water, R.T.=13.5 min) 2.2 mg (69 %) of glycoside 3. Crystallisation from MeOH afforded glycoside 3 as white crystals, m.p. 297-300°C (decomp.). IR spectrum (KBr pellet): 3419 ($v_{0.H}$); 1660 (v_{c-0}); 1051 (v_{c0}) cm⁻¹. Mass spectrum: 665 [M+Na], 647 [M+Na-H₂O], 643 [M+H], 625 [M+H-H₂O], C₃₃H₅₄O₁₂ (M+H) requires 643.3694, found 643.3658 For ¹³C and ¹H-NMR spectrum see Table 1 and 2.

20-Hydroxyecdysone 22-β-D-glucopyranoside (4).

(20R,22R)-22-(β-D-Glucopyranosyloxy)-2β,3β,14α,20,25-pentahydroxy-5β-cholest-7-en-6-one

Acetylated glycoside 18 (5.0 mg, 5.6 μ mol) was treated with potassium cyanide (0.6 mg) in methanol (150 μ l) in the same manner as in the synthesis of glycoside 2, yielding after RP-HPLC separation (40% MeOH in water R.T.=10.2 min) 2.8 mg (78 %) of glycoside 4 as amorphous solid (m.p. 260-265°C). IR spectrum (KBr pellet): 3419 (v_{col}); 1639 (v_{col}); 1050, 1030 (v_{col}) cm⁻¹. Mass spectrum: 665 [M+Na], 647 [M+Na-H₂O], 643

[M+H], 625 [M+H-H₂O], $C_{33}H_{34}O_{12}$ (M+H) requires 643.3694, found 643.3657. For ¹³C and ¹H-NMR spectrum see Table 1 and 2.

20-Hydroxyecdysone 25-β-D-glucopyranoside (5).

(20R,22R)-25-(β-D-Glucopyranosyloxy)-2β,3β,14α,20,22-pentahydroxy-5β-cholest-7-en-6-one

Acetylated glycoside 7 (7.0 mg, 7.5 µmol) was treated with potassium cyanide (0.8 mg) in methanol (150 µl) in the same manner as in the synthesis of glycoside 2, yielding after RP-HPLC separation (40% MeOH in water R.T.=11.5 min) 4.1 mg (85 %) of glycoside 5 as amorphous solid (m.p. 158-163°C). IR spectrum (KBr pellet): 3420 ($v_{0:H}$); 1652 ($v_{c=0}$); 1052 ($v_{c=0$

20-Hydroxyecdysone 2,3,22-triacetate (6).

(20R,22R)-2β,3β,22-Triacetyloxy-14α,20,25-trihydroxy-5β-cholest-7-en-6-one.

20-Hydroxyecdysone (1; 48.0 mg, 100 μ mol) was dissolved in pyridine (550 μ l). DMAP (1 mg) and acetic anhydride (120 μ l) were added. The reaction mixture was stirred for 3 hours at room temperature; progress of the reaction was monitored by HPLC. The reaction was stopped by addition of ethyl alcohol and the residue was treated and evaporated with ethyl alcohol (5 x 1 ml). Triacetate 6 was separated using column chromatography (silica-gel, mobile phase 4% MeOH in CH₂Cl₂). Crystallisation from methanol afforded 41.2 mg (68 %) of the compound 6, m.p. 145 - 147 °C. IR spectrum: 3601 (v_{OH}); 1739 ($v_{C=0}$ ester); 1652 ($v_{C=0}$ ketone); 1602 ($v_{C=0}$ cm⁻¹. Mass spectrum, C₃₃H₅₀O₁₀: 629 [M+Na], 607 [M+H], 589 [M+H-H₂O], 571 [M+H-2H₂O]. For ¹H-NMR spectrum see Table 2.

20-Hydroxyecdysone 2,3,22-triacetate 25-(2,3,4,6-tetra-O-acetyl-β-D-glucopyranoside) (7). (20R,22R)-25-(2,3,4,6-Tetra-O-acetyl-β-D-glucopyranosyloxy)-2β,3β,22-triacetyloxy-14α,20-dihydroxy-5β-cholest-7-en-6-one.

The reaction was carried out in an oven dried glassware under nitrogen atmosphere. A solution of triacetate 6 (10.2 mg, 16.8 μ mol) in dichloromethane (30 μ) was added to a suspension of Ag-silicate (110 mg) in dichloromethane (700 μ). The mixture was stirred for 1 hour at room temperature; then a solution of tetra-O-acetylglucopyranosyl bromide (30.0 mg, 73 μ mol) in dichloromethane (100 μ l) was added. The reaction mixture was stirred for 48 hours at room temperature. The solid catalyst was filtered off and the filtrate was passed through a short column of silica-gel. NP-HPLC (DMW 960/40/1, R.T.=3.9 min) afforded 10.9mg (69 %) of compound 7 as an amorphous solid. IR spectrum: 3589, 3513 (v_{OH}); 1741 (v_{C=O} ester); 1662 (v_{C=O} ketone); 1626 (v_{C=C}) cm⁻¹. Mass spectrum, C₄₇H₅₈O₁₉: 959 [M+Na], 937 [M+H], 919 [M+H-H₂O], 901 [M+H-2H₂O], 589 [M+H-sugar]. For ¹H-NMR spectrum see Table 2.

20-Hydroxyecdysone 20,22-phenylboronate (8).

(20R,22R)-2β,3β,14α,25-Tetrahydroxy-20,22-[(phenylborylene) bis (oxy)]-5β-cholest-7-en-6-one.

Phenylboronic acid (8.4 mg, 69.0 µmol) was added to a solution of 20-hydroxyecdysone (1; 30.0 mg, 62.5 µmol) in methanol (300 µl). The reaction mixture was stirred for 20 min. at room temperature. The solvent was evaporated and the dry residue was purified by NP-HPLC (DMW 925/75/1.5, R.T.=19.4 min). Pure boronate **8** (33.0 mg, 93%) was obtained as an amorphous solid after evaporation of solvents. IR spectrum: 3600, 3448 ($v_{0.4}$); 1636 ($v_{c=0}$ ketone); 1626 ($v_{c=c}$); 1603, 1498 ($v_{c=c}$ arom.); 1358 ($v_{B=0}$ cm⁻¹. Mass spectrum, C₃₃H₄₇O₇B: 567 [M+H], 549 [M+H-H₂O], 531 [M+H-2H₂O]. For ¹H-NMR spectrum see Table 2.

20-Hydroxyecdysone 2-(2,3,4,6-tetra-O-acetyl-β-D-glucopyranoside) 20,22-phenylboronate (9). (20R,22R)-2β-(2,3,4,6-Tetra-O-acetyl-β-D-glucopyranosyloxy)-3β,14α,25-trihydroxy-20,22-[(phenylborylene) bis (oxy)]-5β-cholest-7-en-6-one.

The reaction was performed in the same manner as for compound 7. Boronate 8 (30.0 mg, 53 µmol) was stirred in dichloromethane (1 ml) with Ag-silicate (68.6 mg) for 1 hour. Tetra-O-acetylglucopyranosyl bromide

(15.2 mg, 74 µmol) in dichloromethane (50 µl) was then added. After work-up, a mixture of glycosides 9, 10 and 11 was obtained. NP-HPLC separation (DMW 925/75/1.5, R.T.=3.6, then DMW 960/40/1 R.T.=12.6 min) afforded glycoside 9 (19.9 mg, 42 %) as an amorphous solid. IR spectrum: $3601 (v_{OH})$; $1741 (v_{C=0}$ ester); $1662 (v_{C=0}$ ketone); $1626 (v_{C=C})$; 1603, $1498 (v_{C=C} \text{ arom})$; $1358 (v_{B=0}) \text{ cm}^{-1}$. Mass spectrum, $C_{47}H_{65}O_{16}B$: 897 [M+H], 879 [M+H-H₂O], 549 [M+H-sugar]. For ¹H-NMR spectrum see Table 2.

20-Hydroxyecdysone 3-(2,3,4,6-tetra-O-acetyl-β-D-glucopyranoside) 20,22-phenylboronate (10). (20R,22R)-3β-(2,3,4,6-Tetra-O-acetyl-β-D-glucopyranosyloxy)-2β,14α,25-trihydroxy-20,22-[(phenylborylene) bis (oxy)]-5β-cholest-7-en-6-one.

Glycoside 10 was obtained along with glycosides 9 and 11 after glycosylation of 8. NP-HPLC separation (DMW 925/75/1.5, R.T.=3.6 min, then DMW 960/40/1, R.T.=16.6 min) of the mixture gave pure glycoside 10 (10.0 mg, 21 %) as an amorphous solid. IR spectrum: $3600 (v_{O+H})$; 1740 ($v_{C=0}$ ester); 1662 ($v_{C=0}$ ketone); 1626 ($v_{C=0}$; 1603, 1498 ($v_{C=C}$ arom); 1358 ($v_{B=0}$) cm⁻¹. Mass spectrum, C₄₇H₆₅O₁₆B: 897 [M+H], 879 [M+H-H₂O], 549 [M+H-sugar]. For ¹H-NMR spectrum see Table 2.

20-Hydroxyecdysone 25-(2,3,4,6-tetra-O-acetyl-β-D-glucopyranoside) 20,22-phenylboronate (11). (20R,22R)-25-(2,3,4,6-Tetra-O-acetyl-β-D-glucopyranosyloxy)-2β,3β,14α-trihydroxy-20,22-[(phenylborylene) bis (oxy)]-5β-cholest-7-en-6-one.

Glycoside 11 was obtained along with glycosides 9 and 10 after glycosylation of 8. NP-HPLC separation (DMW 925/75/1.5, R.T.=6.1 min) gave pure glycoside 11 (3.4 mg, 7 %) an amorphous solid. IR spectrum: 3600 (ν_{O-H}); 1740 ($\nu_{C=0}$ ester); 1662 ($\nu_{C=0}$ ketone); 1626 ($\nu_{C=C}$); 1603, 1498 ($\nu_{C=C}$ arom.); 1358 ($\nu_{B=0}$) cm⁻¹. Mass spectrum, $C_{47}H_{65}O_{16}B$: 897 [M+H], 879 [M+H-H₂O], 549 [M+H-sugar]. For ¹H-NMR spectrum see Table 2.

20-Hydroxyecdysone 2-acetate 20,22-phenylboronate (12).

(20R,22R)-2 β -Acetyloxy-3 β ,14 α ,25-trihydroxy-20,22-[(phenylborylene)bis(oxy)]-5 β -cholest-7-en-6-one. Acetic anhydride (100 µl) was added to a solution of boronate 8 (19.5 mg, 34.4 µmol) in pyridine (500 µl) and the reaction mixture was stirred at room temperature. After 1 hour the reaction was stopped with ethanol (1 ml). The reaction mixture contained starting boronate 8 (7 %) and diacetate 13 (16 %) along with monoacetate 12 (77 %) according to the NP-HPLC analysis. Pure acetate 12 was obtained by NP-HPLC separation (DMW 925/75/1.5, R.T.=6.9 min) of the crude mixture. Crystallisation from methanol gave 12 (14.5 mg, 70 %, m.p. 265-270 °C). IR spectrum: 3600, 3468 (v_{OH}) 1738 ($v_{C=0}$ ester); 1664 ($v_{C=0}$ ketone); 1626 ($v_{C=0}$); 1603, 1498 ($v_{C=0}$ arom.); 1358 ($v_{B=0}$ cm⁻¹. Mass spectrum, C₃₅H₄₉O₈B: 631 [M+Na], 609 [M+H], 591 [M+H-H₂O], 573 [M+H-2H₂O]. For ¹H-NMR spectrum see Table 2.

20-Hydroxyecdysone 2,3-diacetate 20,22-phenylboronate (13).

(20R,22R)-2 β ,3 β -Diacetyloxy-14 α ,25-dihydroxy-20,22-[(phenylborylene)bis(oxy)]-5 β -cholest-7-en-6-one Acetic anhydride (95 µl) was added to a solution of boronate 8 (18.3 mg, 32.3 µmol) and DMAP (0.5 mg) in pyridine (300 µl). The reaction mixture was stirred for 3 hours at room temperature. Excess acetic anhydride was destroyed by ethyl alcohol, and the mixture was treated and evaporated with ethyl alcohol (4 x 1 ml) to remove pyridine. The crude mixture was subjected to NP-HPLC (DMW 960/40/1, R.T.=4.8 min), giving diacetate 13 (16.4 mg, 78 %) as an amorphous solid. IR spectrum: 3600 (ν_{O-H}); 1738 ($\nu_{C=0}$ ester); 1665 ($\nu_{C=0}$ ketone); 1626 ($\nu_{C=0}$); 1605, 1499 ($\nu_{C=C}$ arom.); 1358 ($\nu_{B=0}$) cm⁻¹. Mass spectrum, C $_{37}H_{s1}O_{9}B$: 651 [M+H], 591 [M+H-AcOH], 573 [M+H-H₂O-AcOH]. For ¹H-NMR spectrum see Table 2.

20-Hydroxyecdysone 2,3,25-triacetate 20,22-phenylboronate (14).

(20R,22R)-2 β ,3 β ,25-Triacetyloxy-14 α -hydroxy-20,22-[(phenylborylene) bis(oxy)]-5 β -cholest-7-en-6-one. Acetic anhydride (120 µl) was added to a solution of boronate 8 (28.3 mg, 50 µmol) and DMAP (0.5 mg) in pyridine (100 µl). The reaction mixture was stirred for 6 hours at 40 °C. Excess acetic anhydride was destroyed by ethyl alcohol, and the mixture was treated and evaporated with ethyl alcohol (4 x 1 ml) to remove pyridine. The crude mixture was subjected to NP-HPLC (960/40/1, R.T.=2.8 min), giving triacetate 14 (29.4 mg, 85 %) as an amorphous solid. IR spectrum: 3595 ($v_{O:H}$); 1738 ($v_{C:O}$ ester); 1664 ($v_{C:O}$ ketone); 1603, 1496 ($v_{C:C}$ arom.); 1360 ($v_{B:O}$) cm⁻¹. Mass spectrum, C₃₉H₅₃O₁₀B: 693 [M+H], 675 [M+H-H₂O], 633 [M+H-AcOH], 615 [M+H-H,O-AcOH]. For ¹H-NMR spectrum see Table 2.

20-Hydroxyecdysone 2-acetate 3-(2,3,4,6-tetra-O-acetyl-β-D-glucopyranoside) 20,22-phenylboronate (15)

(20R,22R)-2β-Acetyloxy-3β-(2,3,4,6-tetra-O-acetyl-β-D-glucopyranosyloxy)-14α,25-dihydroxy-20,22-[(phenylborylene) bis (oxy)]-5β-cholest-7-en-6-one.

The reaction was performed in the same manner as for compound 7. Aglycone 12 (35.0 mg, 57.7 μ mol) was stirred in dichloromethane (1 ml) with Ag-silicate (80.6 mg) for 1 hour . Tetra-O-acetylglucopyranosyl bromide (27.3 mg, 66.4 μ mol) in dichloromethane (80 μ l) was then added. After work-up, the mixture of glycosides 15 and 16 was obtained in 1:1 ratio. NP-HPLC separation (DMW 960/30/1, R.T.=17.3 min), afforded glycoside 15 (14.6 mg, 27 %) as an amorphous solid. IR spectrum: 3597, 3523 (v_{OH}); 1752 ($v_{C=0}$ ester); 1660 ($v_{C=0}$ ketone); 1626 ($v_{C=C}$); 1603, 1500 ($v_{C=C}$ arom.); 1358 ($v_{B=0}$) cm ⁻¹. Mass spectrum, C₄₉H₆₇O₁₇B: 939 [M+H], 921 [M+H-H₂O], 591 [M+H-sugar]. For ¹H-NMR spectrum see Table 2.

20-Hydroxyecdysone 2-acetate 25-(2,3,4,6-tetra-O-acetyl-β-D-glucopyranoside) 20,22-phenylboronate (16).

(20R,22R)-25-(2,3,4,6-Tetra-O-acetyl-β-D-glucopyranosyloxy)-2β-acetyloxy-3β,14α-dihydroxy-20,22-[(phenylborylene) bis (oxy)]-5β-cholest-7-en-6-one.

Glycoside 16 was obtained along with glycoside 15 after glycosylation of 12. After NP-HPLC separation (DMW 970/30/1, R.T.=18.1 min), pure glycoside 16 (10.7 mg, 20 %) was obtained as an amorphous solid. IR spectrum: 3597 ($v_{0,H}$); 1754, 1142 ($v_{C=0}$ ester); 1664 ($v_{C=0}$ ketone); 1626 ($v_{C=C}$); 1603, 1500 ($v_{C=C}$ arom.); 1358 (v_{B-O}) cm⁻¹. Mass spectrum, C₄₉H₆₇O₁₇B: 939 [M+H], 921 [M+H-H₂O], 591 [M+H-sugar]. For ¹H-NMR spectrum see Table 2.

20-Hydroxyecdysone 2,3-diacetate (17).

(20R,22R)-2β,3β-Diacetyloxy-14α,20,22,25-tetrahydroxy-5β-cholest-7-en-6-one.

Hydrogen peroxide (10 µl) was added to a solution of boronate 13 (12.0 mg, 18.5 µmol) in methanol (100 µl). The reaction mixture was stirred for 10 min at room temperature. After evaporation of the solvent, the crude mixture was subjected to NP-HPLC (DMW 925/75/1.5, R.T.=8.2 min) giving acetate 17 (8.7 mg, 89 %) as an amorphous solid. IR spectrum: 3598 ($v_{0,H}$); 1737 ($v_{c=0}$ ester); 1662 ($v_{c=0}$ ketone); 1625 ($v_{c=0}$) cm⁻¹. Mass spectrum, C₃₁H₄₈O₉: 565 [M+H], 547 [M+H-H₂O], 529 [M+H-2H₂O], 511 [M+H-3H₂O]. For ¹³C and ¹H-NMR spectrum see Table 1 and 2.

20-Hydroxyecdysone 2,3-diacetate 22-(2,3,4,6-tetra-O-acetyl-β-D-glucopyranoside) (18).

(20R,22R)-22-(2,3,4,6-Tetra-O-acetyl-β-D-glucopyranosyloxy)-2β,3β-diacetyloxy-14α,20,25-trihydroxy-5β-cholest-7-en-6-one.

The reaction was performed in the same manner as for compound 7. Aglycone 17 (65.6 mg, 116.2 μ mol) was stirred in dichloromethane (2 ml) with Ag-silicate (150 mg) for 1 hour. Tetra-O-acetylglucopyranosyl bromide (54.2 mg, 123 μ mol) in dichloromethane (150 μ l) was then added. After work-up, NP-HPLC separation (DMW 970/30/1, R.T.=17.4 min) afforded glycoside 18 (5.4 mg, 9 %) and 19 as amorphous solids. IR spectrum: 3529 (v_{OH}); 1741 (v_{C=0} ester); 1662 (v_{C=0} ketone); 1626 (v_{C=0} cm⁻¹. Mass spectrum, C₄₅H₅₆O₁₈: 895 [M+H], 877 [M+H-H₂O], 859 [M+H-H₂O], 529 [M+H-H₂O-sugar], 511 [M+H-2H₂O-sugar]. For ¹³C and ¹H-NMR spectrum see Table 1 and 2.

20-Hydroxyecdysone 2,3-diacetate 25-(2,3,4,6-tetra-O-acetyl-β-D-glucopyranoside) (19). (20R,22R)-25-(2,3,4,6-Tetra-O-acetyl-β-D-glucopyranosyloxy)-2β,3β-diacetyloxy-14α,20,22-trihydroxy-5β-cholest-7-en-6-one.

Glycoside 19 was obtained along with glycoside 18 after glycosylation of 17. NP-HPLC purification (DMW 970/30/1, R.T.=8.1 min) gave 19 (17.5 mg, 32 %). IR spectrum: 3529 ($v_{O,H}$); 1741 (v_{O-0} ester); 1662 (v_{C-0} ketone); 1626 (v_{C-0} cm⁻¹. Mass spectrum, C₄₅H₆₆O₁₈: 895 [M+H], 877 [M+H-H₂O], 859 [M+H-H₂O], 529 [M+H-H₂O-sugar], 511 [M+H-2H₂O-sugar]. For ¹³C and ¹H-NMR spectrum see Table 1 and 2.

20-Hydroxyecdysone 2-(2,3,4,6-tetra-O-acetyl-β-D-glucopyranoside) (20).

(20R,22R)-2β-(2,3,4,6-Tetra-O-acetyl-β-D-glucopyranosyloxy)-3β,14α,20,22,25-pentahydroxy-5βcholest-7-en-6-one.

The boronate protecting group was removed in the same manner as for compound 17. Boronate 9 (16.0 mg, 17.8 µmol) in methanol (150 µl) was treated with hydrogen peroxide (10 µl), yielding after NP-HPLC separation (DMW 925/75/1.5, R.T.=11.1 min) 13.2 mg (91 %) of compound 20. IR spectrum: 3485 ($v_{0.H}$); 1741 ($v_{C=0}$ ester); 1662 ($v_{C=0}$ ketone); 1626 ($v_{C=C}$) cm⁻¹. Mass spectrum, C₄₁H₆₂O₁₆: 811 [M+H], 793 [M+H-H₂O], 775 [M+H-2H₂O], 463 [M+H-sugar], 445 [M+H-sugar-H₂O]. For ¹³C and ¹H-NMR spectrum see Table 1 and 2.

20-Hydroxyecdysone 3-(2,3,4,6-tetra-O-acetyl-β-D-glucopyranoside) (21).

(20R,22R)-3β-(2,3,4,6-Tetra-O-acetyl-β-D-glucopyranosyloxy)-2β,14α,20,22,25-pentahydroxy-5βcholest-7-en-6-one.

The boronate protecting group was removed in the same manner as for compound 17. Boronate 10 (6.4 mg, 7.2 µmol) in methanol (150 µl) was treated with hydrogen peroxide (8 µl), yielding after NP-HPLC separation (DMW 925/75/1.5, R.T.=11.1 min) 4.2 mg (75 %) of compound 21. IR spectrum: 3485 (v_{OH}); 1740 ($v_{C=0}$ ester); 1662 ($v_{C=0}$ ketone); 1626 ($v_{C=0}$ cm⁻¹. Mass spectrum, C₄₁H₆₂O₁₆: 833 [M+Na], 811 [M+H], 793 [M+H-H₂O], 775 [M+H-2H₂O], 463 [M+H-sugar], 445 [M+H-sugar-H₂O]. For ¹³C and ¹H-NMR spectrum see Table 1 and 2.

20-Hydroxyecdysone 25-(2,3,4,6-tetra-O-acetyl-β-D-glucopyranoside) (22). (20R,22R)-25-(2,3,4,6-Tetra-O-acetyl-β-D-glucopyranosyloxy)-2β,3β,14α,20,22-pentahydroxy-5βcholest-7-en-6-one.

The boronate protecting group was removed in the same manner as for compound 17. Boronate 11 (4.9 mg, 5.4 µmol) in methanol (100 µl) was treated with hydrogen peroxide (8 µl), yielding after NP-HPLC separation (DMW 925/75/1.5, R.T.=16.0 min) 4.0 mg (91 %) of compound 22. IR spectrum: 3485 (v_{o+H}); 1741 ($v_{c=0}$ ester); 1662 ($v_{c=0}$ ketone); 1626 ($v_{c=c}$ cm⁻¹. Mass spectrum, C₄₁H₆₂O₁₆: 811 [M+H], 793 [M+H-H₂O], 775 [M+H-2H₂O], 463 [M+H-sugar] 445 [M+H-sugar-H₂O]. For ¹³C and ¹H-NMR spectrum see Table 1and 2.

Acknowledgement

Financial support by the Grant Agency of The Academy of Sciences of the Czech Republic No. 45513 is acknowledged.

Carbon	1	2	3 ^a	4	5	17	18	19	20	21	22
C-1	37.36	36.11	38.99	37.38	37.36	35.01	34.96	34.96	35.91	38.43	37.38
C-2	68 .70	76.40	68.34	68.71	68.70	70.15	70.12	70.16	77.33	67.73	68.7 0
C-3	68.52	65.98	77.39	68.52	68.51	68.75	68.70	68.67	66.20	77.45	68.53
C-4	32.86	32.10	30,80	32,86	32.86	30.19	30.14	30.17	33.66	30.07	32.90
C-5	51.79	51.84	51.41	51.80	51.78	52,48	52.47	52.46	51.69	52.03	51.81
C-6	206.45	206.16	203.56	206.45	206.44	204.63	204.70	204,72	206.08	205.24	206.50
C-7	122.13	122.11	121.69	122.12	122.17	122.06	122.07	121.98	122.15	122.12	122.10
C-8	167.97	168.14	166.75	167.95	167.92	16 8 .20	168.15	168.37	168.11	167.90	168.09
C-9	35.09	34.99	34.35	35.08	35.10	35.12	35.07	35.12	35.00	35.05	35.16
C-10	39.26	39.51	38.73	39.28	39.27	39.38	39.38	39.32	39.45	39.12	39.26
C-11	21.50	21.50	21.15	21.53	21.46	21.52	21.57	21.56	21.50	21.57	21.56
C-12	32.51	32.47	32.03	32.64	32.50	32.45	32.54	32.45	32.50	32.48	32.55
C-13	b	48.57	48.15	b	b	b	Ь	A8.58	b	b	b
C-14	85.23	85.23	84.30	85.26	85.37	85.19	85,16	85.17	85.17	85.24	85.23
C-15	31.78	31.74	31.80	31.84	31.76	31.83	31.87	31.82	31.75	31.80	31.79
C-16	21.50	21.38	21.57	21.40	21.46	21.52	21.36	21.56	21.50	21.49	21.56
C-17	50,53	50.52	50.20	51.14	50.43	50.56	51.09	50.49	50.55	50.52	50.54
C-18	18.05	18.05	17.99	18.14	18.06	18.04	18.32	18.08	18.01	18.04	18.08
C-19	24.40	24.23	24.12	24.40	24.40	24.18	24.15	24.22	24.30	24.41	24.42
C-20	77.90	77.92	77.03	77.46	77.96	77.91	77.26	77.94	77.90	77.90	77.97
C-21	21.05	21.05	21.80	22.39	21.06	21.08	22.20	20.91	21.06	21.03	21.08
C-22	78.42	78.42	77.73	89.70	78.41	78.44	91.16	78.17	7 8.44	78.43	7 8 .17
C-23	27.34	27.33	27.56	27.60	26.69	27.37	27.60	27.00	27.37	27.34	26.96
C-24	42.40	42.38	42.73	40.93	40.10	42.40	41.47	40.95	42.40	42.40	41.05
C-25	71.29	71.29	69.79	71.38	78.67	71.30	71.04	79.46	71.30	71.30	79.48
C-26	29.70	29.71	30.12	29.65	27.35	29.70	29.86	26.83	29.72	29.72	26.83
C-27	28.95	28.95	30.04	29.05	27.35	29.01	28.92	26.48	28.96	28.94	26.31
Glc:C-1		102.68	103. 98	105.71	98.66		102.76	96.30	100.66	100.03	96.32
C-2'		75.19	75.03	75.44	75.30		73.23	73.16	73.02	72.88	73.16
C-3'		77.87	78.74	78.08	78.19		72.88	72.47	72.94	72.75	72.51
C-4'		71.64	71.73	71.42	71.87		69.97	70.13	69. 8 4	69. 8 6	70.17
C-5'		77.97	78.54	77.96	779.00		74.36	74.34	74.44	74.24	74.41
C-6'		62.71	62.70	62.43	63.13		63.30	63.44	63.27	63.07	63.43
Ac: CO							172.23	172.32	171.71(2)	172.34	172.33
							172.07	171.99(2)	171.50	171.62	171.69
							172.00	171.67	171.30	171.48	171.34
							171.59	171.34		171.27	171.14
							171.24	171.12			
_							171.01				
СН,							21.10	21.02	20.75(2)	21.03	20.89
1							20,90(2)	20.91(2)	20.55(2)	20.60	20.68
							20.69	20.70		20.54(2)	20,57(2)
1							20.51(2)	20.60(2)			

 Table 1
 Carbon-13 Chemical Shifts of Ecdysteroid Derivatives in Methanol-d4

^a Data from d_5 -pyridine solution (insoluble in methanol- d_4); ^b overlapped with a strong signal of solvent at ca 49.0 ppm

Proton Chemical shifts / (Coupling constants)											
Froton	1	2	3 *	4	5	6	7	8	9	10	11
H-2	3.86 ddd	4.00 ddd	4.11 dt	3.82 ddd	3.85 m	5.07 ddd	5.08 ddd	3.84 m	4.06 ddd	3.78 m	3.84 m
	(12.0;4.3;3.4)	(12.0;4.2;3.0)	(12.3;3.0;3.0)	(12.0;4.0;3.0)	I.	(12.4;4.5;3.0)(12.5;4.0;3.0)		(12.0;4.0;3.0)		
H-3	3.93 bq	4.13 bq	4.31 bq	3.90 um	3.92 um	5.29 q	5.30 um	3.91 bq	4,10 m	4.05 um	3.91 um
	(3.3)	(3.0)	(3.0)			(3.0)		(3.0)			
H-5	2.33 dd	2.33 dd	2.93 dd	b	b	b	2.28 dd	2.34 dd	2.36 dd	b	2.34 dd
1	(11.0;6.5)	(10.5;6.0)	(13.3;3.5)				(13.0;4.4)	(12.5;5.0)	(9.2;8.0)		(12.2;5.0)
H-7	5.74 d	5.71 d	6.21 d	5.71 d	5.72 d	5.78 d	5.77 d	5.73 d	5.73 d	5.75 d	5.73 d
	(2.6)	(2.5)	(2.3)	(2.4)	(2.5)	(2.3)	(2.2)	(2.5)	(2.5)	(2.4)	(2.5)
H-9	3.16 ddd	3.14 m	3.53 m	3.16 m	3.16 m	3.26 m	3.28 m	3.18 ddd	3.16 m	3.18 m	3,18 ddd
	(11.0;7.2;2.6)						(11.0;7.5;2.5;)		12.0;7.0;2.4)
H-17	2.45 t	2.45 t	2.98 t	2.33 t	2.46 t	2.47 t	2.46 t	2.50 t	2.50 t	2.49 t	2.50 t
	(9.2)	(9.0)	(9.0)	(9.0)	(9.0)	(8.8)	(8.6)	(8.8)	(8.8)	(8.8)	(9.0)
H-22	3.37 dd	3.36 dd	3.87 dd	3.48 bd	3.35 bd	4.90 dd	4.87 bd	4.22 dd	4.22 dd	4.22 dd	4.20 dd
1	(10.7;1.8)	(10.0;1.5)	(9.6;1.0)	(9.6; <2)	(10.0; <2)	(10.2;1.7)	(10.0;<2)	(8.0;4.5)	(9.4;3.7)	(9.0;4.0)	(10.0;2.8)
Me-18	0.914 s	0.910 s	1.170 s	0.900 s	0.910 s	0.918 s	0.92 s	1.015 s	1.004 s	1.009 s	1.010 s
Me-19	0.944 s	0.945 s	0.858 s	0,935 s	0.939 s	1.021 s	1.02 s	0,966 s	0.972 s	0.931 s	0.961 s
Me-21	1.198 s	1.196 s	1.576 s	1.188 s	1.192 s	1.298 s	1.30 s	1.405 s	1.399 s	1.403 s	1.405 s
Me-26	1.185 s	1.179 s	1.374 s	1.160 s	1.245 s	1.161 s	1.21 s	1.233 s	1.222 s	1.228 s	1.305 s
Me-27	1.178 s	1.170 s	1.374 s	1.154 s	1.216 s	1.144 s	1.20 s	1.220 s	1.208 s	1.214 s	1.281 s
H-1'	-	4.53 d	4.90 d	4.41 d	4.50 d		4.94 d		4.99 d	4.85 d	5.00 d
		(7.8)	(7.8)	(7.6)	(7.7)		(7.9)		(8.1)	(8.1)	(8.0)
H-2'		3.18 dd	4.03 dd	3.2-3.4 m	3.14 dd		4.87 dd		4.88 dd	4.97 dd	4.87 dd
		(7.8;9.0)	(7.8;9.0)		(7.7;9.0)		(7.9;9.3)		(8.1;9.7)	(8.1;9.8)	(8.0;9.8)
H-3'	-	3.40 t	4.22 t	3.2-3.4 m	3.41 t		5.30 dd		5.24 dd	5.30 dd	5.28 dd
		(9.0;9.0)	(9.0;9.0)		(9.0;9.0)		(9.3;9.8)		(9.7;9.5)	(9.8;9.4)	(9.8;9.4)
H-4'	-	3.36 t	4.18 t	3.2-3.4 m	3. 24 t		4.37 dd		5.01 dd	5.04 dd	4.97 dd
		(9.0;9.0)	(9.0;9.0)		(9.0;9.0)		(9.8;10.1)		(9.5;10.0)	(9.4;10.0)	(9.4;10.0)
H-5'	-	3.32 m	3.92 ddd	3.2-3.4 m	3.31 ddd		3.95 ddd		3.97 ddd	3.98 ddd	3.96 ddd
		(9.0;2.5;5.0)	(9.0;2.2;5.8)		(9.0;2.5;6.7)		(10.1;5.5;2.6)	(10.0;5.6;2.4)(1	0.0;5.5;2.5)	10.0;5.7;2.4)
H-6a'	-	3.84 dd	4.53 dd	3.84 dd	3.84 dd		4.25 dd		4.24 dd	4.28 dd	4.22 dd
{		(11.5;2.5)	(11.7;2.2)	(12.0;2.4)	(11.7;2.5)		(12.1;5.5)		(12.2;5.6)	(12.2;5.5)	(12.0;5.7)
H-6b'		3.67 dd	4.30 dd	3.68 dd	3.58 dd		4.08 dd		4.14 dd	4.09 dd	4.07 dd
		(11.5;5.0)	(11.7;5.8)	(12.0;4.8)	(11.7;6.7)		(12.1;2.6)		(12.2;2.4)	(12.2;2.5)	(12.0;2.4)
Ac:	'	-	-	-		2.08 s	2.01 s		1.991 s	2.156 s	2.021 s
						2.05 s	1.98 s		1.991 s	2.017 s	1.991 s
						1.94 s	1.94 s		1.983 s	1.995 s	1.982 s
1							1.93 s		c	1.963 s	1.935 s
							c		-		
BPh: o-		-	-	-			-	7.77 m	7.77 m	7.78 m	7,78 m
m-	. :	-					-	7.38 m	7.38 m	7.39 m	7.39 m
		_					_	7.49 m	7.48 m	7.49 m	7.48 m
} P-								7.47 AL			

 Table 2
 Proton NMR Spectra of Ecdysteroids 1 - 22 in Acetone-d₆

^a Data from d_5 -pyridine (3 is insoluble in methanol- d_4); ^b not determined; ^c other acetate signals are overlapped with solvent peak.

Chemical Shifts / (Coupling Constants)											
Proton	12	13	14	15	16	17	18	19	20	21	22
H-2	4.96 ddd	5.08 ddd	5.09 ddd	4.88 ddd	4.96 ddd	5.07 ddd	5.06 ddd	5.08 ddd	4.04 dm	3.76 ddd	3.83 m
	(12.2;5.0;3.0)	(12.5;4.4;3.0)	(12.3;4.3;3.0)	(12.8;4.0;3.5)	(12.0;4.0;3.0)	(12.4;4.3;3.0)	(12.4;4.5;3.0)	(12.0;4.5;3.0)	(12.0;4.5;3.0)	(12.0;4.0;3.0)	
Н-3	4.10 um	5.30 um	5.30 um	4.23 um	4.10 um	5.29 um	5.29 um	5.30 um	4.10 um	4.04 um	3.91 um
H-5	2.43 dd	2.30 dd	b	b	2.43 dd	b	2.28 dd	2.29 dd	2.36 dd	2.36 m	2.33 dd
	(13.2;4.2)	(13.3;3.8)			(13.2;4.0)		(13.5;4.0)	(13.0;4.5)	(11.0;6.3)		(11.3;6.0)
Н-7	5.76 d	5.78 d	5.78 d	5.78 d	5.76 d	5.77 d	5.75 d	5.77 d	5.75 d	5.73 d	5.71 d
[(2.5)	(2.5)	(2.4)	(2.4)	(2.4)	(2.5)	(2.5)	(2.3)	(2.5)	(2.6)	(2.5)
H-9	3.27 ddd	3.29 um	3.29 m	3.24 m	3.27 m	3,29 m	3.26 m	3.27 m	3.14 m	3.15 m	3.17 ddd
	(11.5;7;2.5)										(11.5;7;2.5)
H-17	2.51 t	2.51 t	2.51 t	2.50 t	2.51 t	2.46 t	2.40 t	2.46 t	2.45 t	2.45 t	2.45 t
	(8.7)	(8.8)	(9.9)	(8.7)	(8.8)	(8.6)	(9.0)	(8.6)	(9.0)	(9.0)	(9.0)
H-22	4.23 dd	4.22 dd	4.23 dd	4.22 dd	4.21 dd	3.36 bd	3.52 bd	3.35 dd	3.36 dd	3.35 dd	3.35 ddd
1	(9.3;4.0)	(9.4;4.0)	(8.5;4.5)	(9.0;3.4)	(10.5;3.0)	(10.1;< 2)	(9.0; <2)	(10.4;1.8)	(10.5;1.5)	(10.4;1.0)(10.0;5.0;1.7)
Me-18	1.020 s	1.021 s	1.02 s	1.017 s	1.020 s	0. 92 s	0.924 s	0.922 s	0.900 s	0.908 s	0.912 s
Me-19	1.002 s	1.043 s	1.04 s	0.976 s	1.004 s	1.03 s	1.018 s	1.022 s	0.949 s	0.908 s	0.937 s
Me-21	1.408 s	1.404 s	1. 42 s	1.400 s	1.411 s	1.20 s	1.186 s	1.195 s	1.195 s	1.167 s	1.194 s
Me-26	1.228 s	1.225 s	1.49 s	1.222 s	1.307 s	1.18 s	1.181 s	1.244 s	1.186 s	1.176 s	1.243 s
Me-27	1.214 s	1.210 s	1.47 s	1.207 s	1.284 s	1.175 s	1.164 s	1.215 s	1.176 s	1.176 s	1.214 s
H-1'				4.75 d	5.00 d		4.93 d	4.94 d	4.98 d	4.84 d	4.95 d
				(8.1)	(8.2)		(8.2)	(8.2)	(8.1)	(8.0)	(8.0)
H-2'				4.95 dd	4.87 dd		5.01 dd	4.85 dd	4.88 dd	4.96 dd	4.85 dd
				(8.1;9.7)	(8.2;9.7)		(8.2;9.6)	(8.2;9.3)	(8.1;9.6)	(8.0;9.7)	(8.0;9.8)
Н-3'				5.28 dd	5.28 dd		5.31 t	5.29 dd	5.24 t	5.30 dd	5.28 dd
				(9.7;9.6)	(9.7;10.0)		(9.6;9.6)	(9.3;9.7)	(9.6;9.6)	(9.7;9.5)	(9.8;9.5)
H-4'				5.00 dd	4.97 t		5.00 dd	4.96 dd	5.01 dd	5.04 dd	4.95 dd
				(9.6;9.9)	(10.0;10.0)		(9.6;10.0)	(9.7;10.0)	(9.6;10.0)	(9.5;10.0)	(9.5;10.0)
H-5'				3.89 ddd	3.97 ddd		4.08 ddd	3.94 ddd	3.96 ddd	3.98 ddd	3.95 ddd
				(9.9;5.8;2.4)	(10.0;5.6;2.5)		(10.0;7.5;2.5)(9.7;5.6;2.5)	(10.0;5.5;2.5)	(10.0;5.5;2.5)	(10.0;5.5;2.5)
Н-ба'				4.25 dd	4.22 dd		4.22 dd	4.23 dd	4.24 dd	4.28 dd	4.22 dd
				(12.4;5.8)	(12.0;5.6)		(12.0;7.5)	(12.0;5.6)	(12.3;5.5)	(12.3;5.5)	(12.0;5.5)
H-6b'				4.02 dd	4.07 dd		4.11 dd	4.09 dd	4.14 dd	4.08 dd	4.09 dd
				(12.4;2.4)	(12.0;2.4)		(12.0;2.5)	(12.0;2.5)	(12.3;2.5)	(12.2;2.5)	(12.0;2.5)
Ac:	с	2.086 s	1.94 s	2.196 s	2.022 s	2.06 s	2.081 s	2.082 s	1.99s(2x)	2.154 s	2.03 s
		1.942 s	1.91 s	1.989 s	1.997 s	1.94 s	2.070 s	2.023 s	1.94 s	2.014 s	2.01 s
			с	1.979 s	1.993 s		2.008 s	2.012 s	с	1.994 s	1.99 s
				1.963 s	1.983 s		1.952 s	1.989 s		1.962 s	1.94 s
					1.937 s		1.933 s	1.935s(2x)	ł		
BPh: a	- 7.78 m	7.78 m	7.79 m	7.77 m	7.78 m	-	-		-	-	
m	- 7.39 m	7.39 m	7.39 m	7.39 m	7.39 m	-				-	
p	- 7.49 m	7.49 m	7.49 m	7.48 m	7.48 m	-	-	-	-		_

b

1.07

b

C-17

0.61

-0.10

0.53

ь

ь

0.01

ь

-0.07

h

-0.97

Ъ

C-20

-0.44

0.06

-0.65

b

b

0.07

Ь

0.03

ь

8.93

b

C-21

1.34

0.01

1.12

ь

ь

0:03

b

ь

-2.79

b b

C-22

11.28

-0.01

12.72 0.23

b

ь

-0.25

ь

-0.17 -0.27 -0.37

b

0.24

C-23

0.26

-0.65

b

h

-0.38

h

b

-0.14

b

C-24

-1.47

-2.30

-0.93

b

h

-1.35

ь

-1.48

C-25

0.09

7.38

-0.26

b

b

8.19

b

8.16

C-26

-0.05

-2.35

0.16

b

b

-2.87

b

-2.87

C-27

0.10

-1.60

-0.09

b

b

-2.64

b

-2.53

Table 3	Glu	cosylati	Spectra of Ecdysteroids									
		Carbon-13 NMR spectra										
Subst.	Position	Comp.	H-2	Н-3	Me-19	C-1	C-2	C-3	C-4	C-5	C-10	
Glc	2	(2-1)	0.14	0.20	0.00	-1.25	7.70	-2.54	-0.76	0.05	0.25	
	3	(3-1)	-0.06	0.10	-0.20	0.90	0.01	9.16	-1.73	-0.07	-0.07	
Gic(Ac)	2	(9-8)	0.22	0.19	0.01	ь	ь	b	ь	ь	Ъ	
		(20-1)	0.18	0.17	0.01	-1.45	8.63	-2.32	0.80	-0.10	0.19	

Me-26

-0.02

0.06

0.00

0.07

0.05

0.06

0.08

0.06

Me-27

-0.02

0.04

-0.01

0.06

0.06

0.04

0.07

0.04

Table ids

^a The shift values from NMR data obtained in pyridine-d_c solution (data for 1 in pyridine-d_c taken from ref. 21); ^b carbon-13 spectra of corresponding compounds were not measured.

REFERENCES

- Rees, H.H. in Ecdysone from Chemistry to Mode of Action (Koolman, J. ed); Georg Thieme: Stuttgart, 1 1989; pp. 28-38.
- 2 Lafont, R.; Horn, D.H.S. in Ecdysone from Chemistry to Mode of Action (Koolman, J. ed): Georg Thieme: Stuttgart, 1989; pp. 39-64.
- 3 Camps, F. in Ecological Chemistry and Biochemistry of Plant Terpenoids, (Harborne, J. B. and Tomas-Barberan, F. A. eds.); Clarendon Press: Oxford, 1991, pp. 331-376.
- 4 Píš, J.; Harmatha, J.; Sláma, K. in Insect Chemical Ecology (Hrdý, I. ed.); Proceedings of the Conference on Insect Chemical Ecology, Tábor, August 1990; Academia: Praha & SPB Academic Publishing: The Hague, 1991; pp. 227-234.
- 5 O'Reilly, D.R.; Howarth, O.W.; Rees, H.H.; Miller, L.K. Insect Biochem. 1991, 21, 795-801.
- 6 Girault J.-P.; Bathori, M.; Varga, E.; Szendrei, K.; Lafont R. J. Nat. Prod. 1990, 53, 279-293.
- 7 Nishimoto N.; Shiobara Y.; Inoue S.-S.; Fujino, M.; Takemoto, T.; Yeoh C.L.; De Oliveira, F.; Akisue, G, Akisue, M.K.; Hashimoto G. Phytochemistry 1988, 27, 1665-1668.
- 8 Tomás, J.; Camps, F.; Coll, J.; Melé, E.; Pascual, N. Tetrahedron 1992, 48, 9809-9817.
- 9 Galbraith, M.N.; Horn, D.H.S. Aust. J. Chem. 1969, 22, 1045-1057.
- 10 Guédin-Vuong, D.; Nakatani, Y.; Ourisson, G. Croat. Chem. Acta 1985, 58, 547-557.
- Píš, J.; Hykl, J.; Buděšínský, M.; Harmatha, J. Collect. Czech. Chem. Commun. 1993, 58, 612-618. 11
- 12 Morgan, E.D.; Poole, C.F. J. Chromatogr. 1976, 116, 333-341.
- 13 Kubo, I.; Komatsu, S. J. Chromatogr. 1986, 362, 61-70.
- Goodman, L. Adv. Carbohydr. Chem. Biochem. 1967, 22, 109-175, 14
- 15 Mori, K.; Tominaga, M.; Takigawa, T.; Matsui, M. Synthesis 1973, 790-791.
- 16 Mori, H.; Shibata, K.; Tsuneda, K.; Sawai, M. Chem. Pharm. Bull. 1968, 16, 563-566.
- 17 Mori, H.; Tsuneda, K.; Shibata, K.; Sawai, M. Chem. Pharm. Bull. 1967, 15, 466-473.
- 18 Píš, J.; Buděšínský, M.; Vokáč, K.; Laudová, V.; Harmatha, J. Phytochemistry, in press.
- 19 Scheurer, P.G.; Smith, F. J. Am. Chem. Soc. 1954, 76, 3224.
- 20 Paulsen, H.; Lockhoff, O. Chem. Ber. 1981, 114, 3102-3114.
- 21 Girault, J.P.; Lafont, R. J. Insect Physiol. 1988, 34, 701-706.

(Received in UK 18 February 1994; revised 21 June 1994; accepted 24 June 1994)

Glc

Glc(Ac)

3

22

25

22

25

(10-8)

(21-1)

(15 - 12)

(4-1)

(5-1)

(18-17)

(11-8)

(7-6)

(22-1)

(16-12)

(19-17)

-0.06

-0.10

-0.08

Mc-18

-0.01

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.14

0.11

0.13

Me-21

-0.01

-0.01

-0.01

0.01

0.00

0.01

0.00

0.00

-0.04

-0.04

-0.03

H-22

0.11

-0.02

0.16

-0.02

-0.03

-0.02

-0.02

-0.01